The variation of seismic velocities within a simplified earth model, in accordance with the theory of finite strain*

Author:

Birch Francis1

Affiliation:

1. Harvard University, Cambridge, Massachusetts

Abstract

Abstract Murnaghan's theory of finite strain has been applied in an approximate form to a study of the density and velocity variations in a simplified model of the earth outside the core, the model consisting of two homogeneous layers, each at a uniform temperature. Following Jeffreys, the layers are separated by a first-order discontinuity at a depth of 474 km. Above 474 km., the variations of the velocities in this model are shown to be practically the same as Jeffreys' “observed” values. The main features of the velocity-depth curves are represented with fair precision down to the core. This is of course no longer true if the velocities are supposed to vary continuously through the 474-km. level. Whichever supposition be held, if the rate of change of velocity immediately below 474 km. is to be reproduced closely, a gradual change of composition must be introduced. The variation of density upon the two-layer supposition is very close to that derived by Jeffreys and by Bullen by numerical integration of the “observed” velocities, on the supposition of adiabatic compression of homogeneous layers. The validity of their method is shown to depend upon the existence of a small temperature gradient, or of compensating factors which cannot be evaluated. It is suggested that a more rigorous solution of the equations of motion derived from the theory of finite strain might prove of value in interpreting the oscillatory character of seismic records, as well as the direction of the ground motion associated with various wave types.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3