Direct observation of rupture propagation during the 1979 Imperial Valley earthquake using a short baseline accelerometer array

Author:

Spudich Paul1,Cranswick Edward1

Affiliation:

1. U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

Abstract

Abstract The 1979 Imperial Valley, California, earthquake (Ms = 6.9) was recorded on the El Centro differential array, a 213-m-long linear array of 5 three-component digital accelerometers 5.6 km from the nearest tectonic surface rupture. Although absolute time was not recorded on the array elements, a relative time base was established using the main shock hypocentral P wave and the P and S waves from a later aftershock. A cross-correlation technique was used to measure the difference in arrival times of individual seismic waves in a moving 0.6 to 1.2 sec window at each array element, which would then be converted into the wave's slowness (1/velocity) along the array. When applied to the main shock vertical and horizontal accelerograms, results from both components of motion indicated that the early arriving energy came from a source to the south of the array, and the source of the energy moved rapidly to the north of the array during the strong shaking. The ground motions at the array elements were well correlated for about the first 11 sec of motion. These observations suggest that we have observed the initiation of rupture south of the array and its subsequent propagation along the fault to a position north of the array in about 10 sec, and that the energy was radiated from a fairly compact region around the rupture front. If the observed vertical and horizontal ground motions are assumed to be caused by P and S waves, respectively, then the observed slownesses show irregularities which can be interpreted as implying that the observed high-frequency ground motions originated at irregularly distributed regions on the fault surface, or that the rupture velocity was variable, or both. One possible interpretation of the data suggests that the rupture proceeded at near P-wave velocity over a 7-km-long section of fault. Average rupture velocities of about 2.7 to 3.2 km/sec at 8 km depth are consistent with the data, and 2.8 km/sec is weakly preferred under the assumption that rupture propagates at a fixed fraction of the shear velocity. The large vertical pulse, which had a peak acceleration of 1.7 g at E06, was emitted from the portion of the fault extending 25 to 30 km northwest of the hypocenter near Meloland overpass, and not from the point on the fault closest to the differential array. Nothing can be said about fault behavior southeast of the hypocenter.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3