A new asymptotic method for the modeling of near-field accelerograms

Author:

Bernard P.1,Madariaga R.1

Affiliation:

1. L.E.G.S.P., Associé au C.N.R.S. 195 Institute de Physique du Globe Université Pierre et Marie Curie 4 Place Jussieu 75230 Paris Cedex 05 France

Abstract

Abstract We study high-frequency radiation from a dislocation model of rupture propagation at the earthquake source. We demonstrate that in this case all the radiation emanates from the rupture front and, by a change of variables, that at any instant of time the high-frequency waves reaching an observer come from a line on the fault plane that we call isochrone. An asymptotic approximation to near-source velocity and acceleration is obtained that involves a simple integration along the isochrones for every time step. It is shown that wave front discontinuities (critical or stopping phases) are radiated every time an isochrone becomes tangent to a barrier. This leads to what we call the critical ray approximation which is given in a closed form. The previous results are compared with discrete wavenumber synthetics obtained by Bouchon (1982) for the Gilroy 6 recording of the Coyote Lake earthquake of 1980. The fit between the asymptotic and full numerical method is extremely good. The critical ray approximation permits the identification of different phases in Bouchon's synthetics and the prediction of the behavior of the signal in the vicinity of their arrival time.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3