Bayesian Network Inference for Low-Magnitude Nonnatural Seismic Event Discrimination

Author:

Li Xueyan1,Hou Xiaolin1ORCID,Bian Yinju1ORCID,Wang Tingting1ORCID,Ren Mengyi1,Zhang Yixiao1ORCID,Wang Wenjing1

Affiliation:

1. 1Institute of Geophysics, China Earthquake Administration, Beijing, China

Abstract

Abstract In response to the gaps in understanding the causal relationship between seismic waveform features and the types of seismic events, this research is focused on seismic events of low magnitude (ML≤3.0) in the North China region. Using the Bayesian network theory, we conduct an analysis to infer event types for natural earthquakes, artificial explosions, and mining collapses, and the outcomes achieved notable efficacy for the discrimination of seismic events. Through the analysis of seismic waveforms from 1818 events, we systematically extracted and quantified 55 features in temporal, spectral, and energy domains, which were then recoded as node variables for subsequent analysis. The new data set was subject to select nodes with strong associations to the node type. Subsequently, Bayesian network topologies were constructed using three different algorithms to reconstruct the custom network, calculating posterior probabilities and marginal probabilities. Simultaneously, an extensive evaluation with precision–recall curves of the network structure was carried out, encompassing accuracy, precision, recall, and F1-score. Ultimately, sensitivity analysis was performed on each node to reveal the extent of the influence of node variations on the inference of the node type. The findings showed that the sensitivity of discrimination of seismic events was notably high for several features, including high-frequency P/S spectral ratio values (11 to ∼20 Hz), central frequency, dominant frequency, average frequency, rise and decay average frequency, the real part of the complex cepstral coefficients, peak ground acceleration, and zero crossing. In the classification of natural earthquakes, artificial explosions, and mining collapses, it was observed that the probability of mining collapses was maximized when peak ground acceleration was less than 1526.08, and concurrently, the P/S spectral ratio (11 to ∼20 Hz) fell within the range of −0.25 to −0.02.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3