Regional seismic discriminants using wave-train energy ratios

Author:

Woods Bradley B.1,Helmberger Donald V.2

Affiliation:

1. Woodward Clyde Federal Services Pasadena, California 91101

2. Seismological Laboratory California Institute of Technology Pasadena, California 91125

Abstract

AbstractWe have examined broadband regional waveforms of recent (since 1988) Nevada Test Site (NTS) underground explosions and earthquakes throughout the southwestern United States and Baja, Mexico, recorded by TERRAscope and other IRIS stations in order to characterize seismic sources for the purposes of event identification. As expected, earthquakes tended to be richer in long-period surface-wave and short-period shear-wave energy relative to explosions of comparable P-wave strength. Also, explosions, in general, were found to be richer in 1- to 6-sec surface-wave (Rg) energy and other late-arriving coda energy than were earthquakes. Most earthquakes show relatively little long-period (T > 6 sec) Rg and surface-wave coda energy, which we attribute to their deeper source depths, whereas known shallow earthquakes do exhibit these phases. We have developed several seismic discriminants based on our observations. The most promising discriminant is the ratio of short-period (f ≧ 1.0 Hz), vertical component, Pnl wave-train energy (EspPz) to long-period (0.05 to 0.167 Hz), three-component, surface-wave energy (Elp−3). For this ratio, explosions tend to have a higher value than do earthquakes. This discriminant works on the same premise as the teleseismic mb:MS ratio, for which earthquakes are richer in long-period surface-wave energy relative to explosions with the same body-wave magnitude. The long-period passband was chosen to limit the effect of longer-period noise and to remove the effect of the coda surface waves. Another potential discriminant examined is the ratio of short-period (f ≧ 1.0 Hz), vertical-component, P-wave to S-wave energy (EspPz:EspSz). We find that this criterion only yields marginal separation of the source populations but becomes more effective at higher frequency bands (f ≧ 4.0 Hz) or when looking at single-station observations. It does, however, help to quantify significant short-period waveform differences between the three test subsites, with Pahute Mesa shots generating relatively little S-wave energy compared to those of Yucca Flat for which the S wave (or Lg) is often the largest phase, while Rainier's shots are intermediate in character with distinct but less prominent S waves. This S-wave generation is thought to be caused by near-source scattering to converted phases and appears to be highly dependent on the near-source geology. These two discriminants are useful in that they are simple and fast to calculate. Using regional stations for sources 200 to 1300 km away, the magnitude threshold for the EspPz:Elp−3 discriminant is roughly ML ≧ 4.0, the limiting factor being the signal level of the Airy phase, while that for the EspPz:EspSz discriminant is roughly ML ≧ 3.0 for the same distance ranges.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Reference55 articles.

1. Scaling law of seismic spectrum;Aki;J. Geophys. Res.,(1967)

2. Seismic source function for an underground nuclear explosion;Aki;Bull. Seism. Soc. Am.,(1974)

3. Theoretical and observed distance corrections for Rayleigh-wave magnitude;Alewine;Bull. Seism. Soc. Am.,(1972)

4. Canadian magnitudes of earthquakes and nuclear explosions in south-western North America;Basham;Geophys. J. R. Astr. Soc.,(1969)

5. Regional seismic waveform discriminants and case-based event identification using regional arrays;Baumgardt;Bull. Seism. Soc. Am.,(1990)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3