Regional phase development of the Non-proliferation Experiment within the western United States

Author:

Tinker Mark Andrew1,Wallace Terry C.1

Affiliation:

1. Southern Arizona Seismic Observatory Department of Geosciences University of Arizona Tucson, Arizona 85721

Abstract

AbstractTo effectively monitor a Comprehensive Test Ban Treaty, seismologists must be able to confidently detect and identify low-yield explosions. This requires the use of short-period regional phases, which can be extremely complicated. The Non-Proliferation Experiment (NPE) was a low-yield chemical explosion detonated at the Nevada Test Site (NTS) and recorded at more than 50 broadband seismic stations located throughout the western United States. These data were used to investigate the development of Lg and Pn, two seismic phases used in regional discriminants. The frequency-dependent attenuation for Lg recorded at 43 stations is described by the relation QLg (vertical) = 238 f1.28. The amplitude decay for Pn recorded at 38 stations is proportional to Δ−(1.29 + 0.05f) for the frequency window of 1 to 6 Hz. After removing the effects of distance and attenuation, we found the values of the spectral ratio Lg (4-6)/(2-4) to group according to the geologic terrain associated with the path traveled. Stations located within the Basin and Range had lower ratio values than stations located outside the Basin and Range. However, for the spectral ratio Pn (2-4)/(4-6), geologic terrain had an indirect effect. Pn is affected by Moho structure associated with the backazimuth, causing an azimuthal dependence. Of course, Moho structure can be a function of geologic terrain. Furthermore, the Pn arrival may be large or small, independent of azimuth. The values of the discriminant phase ratio Pn (1-2)/Lg (2-4) have an order of magnitude more scatter than Lg/Lg or Pn/Pn. Nonetheless, the values are both a function of geologic terrain (the Lg contribution) as well as Moho structure (Pn contribution).

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3