High-Resolution Shallow Structure along the Anninghe Fault Zone, Sichuan, China, Constrained by Active Source Tomography

Author:

Mu Xinru12,Song Junhao2ORCID,Yang Hongfeng23ORCID,Huang Jianping1,Yao Huajian4,Tian Baofeng5

Affiliation:

1. 1Geosciences Department, China University of Petroleum (East China), Qingdao, Shandong, China

2. 2Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China

3. 3Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

4. 4Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China

5. 5Institute of Geophysics, China Earthquake Administration, Beijing, China

Abstract

Abstract The Anninghe fault (ANHF), located in southwest China, was a major block boundary that hosted M 7.5 earthquakes historically. For seismic hazard assessment, it is critical to investigate fault properties before future earthquakes. To investigate the fault structure, we deployed three linear dense arrays with an aperture of ∼8–9 km across different segments of the ANHF from October 2019 to March 2020. More importantly, we detonated a new methane source to generate seismic waves, which is environmentally friendly and can be used in different regions such as mountainous and urban areas. After data acquisition, we first removed the noise to accurately pick up the first arrivals of seismic waves. Then, we conducted the first-arrival seismic tomography, a method commonly used in the petroleum industry, to obtain the high-resolution P-wave velocity structure. The tomographic results showed distinct low-velocity zones (LVZs) of ∼1000–1500 m in width and ∼300–400 m in depth along the fault, well consistent with the lateral distribution of site amplification that was derived from regional earthquake waveforms. These LVZs may have formed as a combined result of the fault damage zone and ANHF-controlled sediments. As the Anning River Valley is densely populated, our newly identified LVZs shed lights on earthquake hazard in the region. In addition, we demonstrate that using a combination of methane detonation sources, linear dense arrays, and active source tomography can effectively determine the shallow P-wave velocity model in complex environments (i.e., mountains and urban areas).

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3