Learning the Deep and the Shallow: Deep-Learning-Based Depth Phase Picking and Earthquake Depth Estimation

Author:

Münchmeyer Jannes12ORCID,Saul Joachim2ORCID,Tilmann Frederik23ORCID

Affiliation:

1. 1Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, Grenoble, France

2. 2Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany

3. 3Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany

Abstract

Abstract Automated teleseismic earthquake monitoring is an essential part of global seismicity analysis. Although constraining epicenters in an automated fashion is an established technique, constraining event depths is substantially more difficult. One solution to this challenge is teleseismic depth phases, but these can currently not be identified precisely by automatic detection methods. Here, we propose two deep-learning models, DepthPhaseTEAM and DepthPhaseNet, to detect and pick depth phases. For training the models, we create a dataset based on the ISC-EHB bulletin—a high-quality catalog with detailed phase annotations. We show how backprojecting the predicted phase arrival probability curves onto the depth axis yields accurate estimates of earthquake depth. Furthermore, we show how a multistation model, DepthPhaseTEAM, leads to better and more consistent predictions than the single-station model, DepthPhaseNet. To allow direct application of our models, we integrate them within the SeisBench library.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference43 articles.

1. United States national seismic network;Albuquerque Seismological Laboratory (ASL)/USGS,1990

2. New China digital seismograph network;Albuquerque Seismological Laboratory (ASL)/USGS,1992

3. Global telemetered seismograph network;Albuquerque Seismological Laboratory (ASL)/USGS,1993

4. Caribbean network;Albuquerque Seismological Laboratory (ASL)/USGS,2006

5. Global seismograph network, GSN;Albuquerque Seismological Laboratory/USGS,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3