Physics-Based Modeling to Understand and to Propose Forecasting Methods of Induced Seismicity

Author:

Boyet Auregan1ORCID,De Simone Silvia2ORCID,Vilarrasa Víctor1ORCID

Affiliation:

1. 1Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain

2. 2Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Spain

Abstract

Abstract Induced seismicity compromises the widespread deployment of geoenergy applications that contribute to mitigate climate change. In particular, the development of Enhanced Geothermal Systems (EGS) has been hindered by the risk of induced seismicity, mostly caused by hydraulic stimulation aimed at enhancing the permeability of deep hot crystalline rocks. Injection-induced seismicity has been traditionally attributed to fluid pressure buildup, which destabilizes fractures and faults. However, the largest seismic events commonly occur after the stop of injection, when pore pressure drops and both the magnitude and frequency of induced seismicity is expected to decrease. This counterintuitive phenomenon is not well understood. Yet, understanding the triggering mechanisms is the key to reliably forecast and manage induced seismicity. Here, we investigate the triggering mechanisms of co- and post-injection seismicity using coupled hydromechanical models, considering both a homogeneous and a fault-crossed domain, based on the case of Basel EGS (Switzerland). We find that the combination of pressure diffusion, poroelastic stressing, and static stress transfer explains the occurrence of induced seismicity, especially after the stop of injection, significantly better than the pore pressure alone. Considering a fault zone, which is more permeable and deformable than the surrounding rock, amplifies pressure diffusion along the fault and causes anisotropic variations of the stress field that lead to an increase in the seismicity rate that is orders of magnitude larger than for the homogeneous domain. These results point out that identifying the main geological structures through subsurface characterization is key to improve physics-based induced seismicity forecasting.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the evolution of mechanical properties of hot dry rocks after supercritical CO2 injection;Geothermal Energy;2024-08-06

2. Forecasting fluid-injection induced seismicity to choose the best injection strategy for safety and efficiency;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3