Epistemic Uncertainty in Ground-Motion Characterization in the Indian Context: Evaluation of Ground-Motion Models (GMMs) for the Himalayan Region

Author:

Sharma Shikha1,Mannu Utsav1,Singh Bora Sanjay2ORCID

Affiliation:

1. 1Department of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India

2. 2GNS Science, Lower Hutt, New Zealand

Abstract

Abstract One of the major challenges in probabilistic seismic hazard analysis (PSHA) studies, particularly for risk-based decision-making, is to constrain epistemic uncertainties. Epistemic uncertainty associated with ground-motion characterization (GMC) models exerts a strong influence on the hazard estimate for a given target level of ground shaking. In the Indian context (mainly along the Himalayan arc), constraining epistemic uncertainty is a significant challenge owing to the lack of recorded data. This study investigates the epistemic uncertainty associated with ground-motion models (GMMs) considered appropriate for the Himalayan region. First, a review of GMMs considered applicable to the Himalayan region is provided. Subsequently, a graphical comparison of median models is performed, followed by residual and statistical analysis. The evaluation utilizes observations from a recently compiled strong-motion dataset across the Himalayas and Indo-Gangetic plains of northern India. The dataset comprises 519 acceleration traces from 150 events in the moment magnitude (Mw) range Mw 3–7.4, recorded at epicentral distances in the range REpi<300  km. The analysis demonstrates significant between-model variability, particularly with regard to median magnitude and distance scaling. The residual analysis also indicates a large bias and aleatory uncertainty. Moreover, some of the GMMs exhibit trends with distance and magnitude. Overall, our evaluation analysis shows that there is clearly significant aleatory and epistemic uncertainty associated with the GMC modeling owing to the paucity of recorded data. The range of epistemic uncertainty represented by the GMMs (available in the literature) is much larger than that typically captured by the (multiple) global models often used in PSHA studies across India.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference72 articles.

1. Conditional ground-motion model for peak ground velocity for active crustal regions;Abrahamson,2020

2. A stable algorithm for regression analyses using the random effects model;Abrahamson;Bull. Seismol. Soc. Am.,1992

3. PEGASOS—A comprehensive probabilistic seismic hazard assessment for nuclear power plants in Switzerland;Abrahamson,2002

4. Summary of the ASK14 ground motion relation for active crustal regions;Abrahamson;Earthq. Spectra,2014

5. A new empirical relation for strong seismic ground motion for the Himalayan region;Aman;Curr. Sci.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3