Correct Off-Site Determination of Seismic Sensor Orientation from Combined Analyses of Earthquake and Microseism Records

Author:

Park Seongjun1ORCID,Hong Tae-Kyung1ORCID

Affiliation:

1. 1Department of Earth System Sciences, Yonsei University, Seoul, South Korea

Abstract

ABSTRACT Correct sensor orientation is vital for seismological analysis. However, seismic sensors including both borehole and surface seismometers are often installed in incorrect orientations. Individual methods proposed for sensor-orientation determination suffer from their own limitations and uncertainty, leaving the estimates in question before on-site verification. We introduce a method to combine a set of seismic phase analyses, yielding accurate sensor-orientation estimates. The method determines the sensor orientations by weighted-averaging independent estimates from three individual sensor-orientation analyses that are based on earthquake-origin P waves, earthquake-origin Rayleigh waves, and microseism-origin Rayleigh waves. The earthquake-origin seismic phase analyses may suffer from seismic anisotropy along ray paths even with accurate source-location information. On the other hand, the microseism-origin Rayleigh-wave analysis is hardly affected by seismic anisotropy along ray paths, being applicable to any seismic station with a couple of hour-long records. The three analyses complement each other, which enables us to determine representative sensor orientations correctly. We apply the proposed method to densely deployed 377 seismometers in South Korea, examining the sensor orientations. The representative sensor orientations are determined stably with standard errors less than 1°, supporting the accuracy of results. Borehole seismometers are poorly oriented relative to surface seismometers. The proposed method is useful for instant examination of sensor orientations of seismometers in remote regions and borehole seismometers in which physical accessibility is highly limited.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Reference45 articles.

1. How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s;Ardhuin;Geophys. Res. Lett.,2015

2. Ocean wave sources of seismic noise;Ardhuin;J. Geophys. Res.,2011

3. The near-coastal microseism spectrum: Spatial and temporal wave climate relationship;Bromirski;J. Geophys. Res.,2002

4. Mid-ocean microseisms;Bromirski;Geochem. Geophys. Geosys.,2005

5. Sources of primary and secondary microseisms;Cessaro;Bull. Seismol. Soc. Am.,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3