Implementing Non-Poissonian Forecasts of Distributed Seismicity into the 2022 Aotearoa New Zealand National Seismic Hazard Model

Author:

Iturrieta Pablo12ORCID,Gerstenberger Matthew C.3ORCID,Rollins Chris3ORCID,Van Dissen Russ3ORCID,Wang Ting4ORCID,Schorlemmer Danijel1ORCID

Affiliation:

1. 1GFZ German Research Centre for Geosciences, Potsdam, Germany

2. 2Institute of Geosciences, University of Potsdam, Potsdam, Germany

3. 3GNS Science, Lower Hutt, New Zealand

4. 4Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand

Abstract

ABSTRACT Seismicity usually exhibits a non-Poisson spatiotemporal distribution and could undergo nonstationary processes. However, the Poisson assumption is still deeply rooted in current probabilistic seismic hazard analysis models, especially when input catalogs must be declustered to obtain a Poisson background rate. In addition, nonstationary behavior and scarce earthquake records in regions of low seismicity can bias hazard estimates that use stationary or spatially precise forecasts. In this work, we implement hazard formulations using forecasts that trade-off spatial precision to account for overdispersion and nonstationarity of seismicity in the form of uniform rate zones (URZs), which describe rate variability using non-Poisson probabilistic distributions of earthquake numbers. The impact of these forecasts in the hazard space is investigated by implementing a negative-binomial formulation in the OpenQuake hazard software suite, which is adopted by the 2022 Aotearoa New Zealand National Seismic Hazard Model. For a 10% exceedance probability of peak ground acceleration (PGA) in 50 yr, forecasts that only reduce the spatial precision, that is, stationary Poisson URZ models, cause up to a twofold increase in hazard for low-seismicity regions compared to spatially precise forecasts. Furthermore, the inclusion of non-Poisson temporal processes in URZ models increases the expected PGA by up to three times in low-seismicity regions, whereas the effect on high-seismicity is minimal (∼5%). The hazard estimates presented here highlight the relevance, as well as the feasibility, of incorporating analytical formulations of seismicity that go beyond the inadequate stationary Poisson description of seismicity.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3