Rapid Estimation of Single-Station Earthquake Magnitudes with Machine Learning on a Global Scale

Author:

Dybing Sydney N.1ORCID,Yeck William L.2ORCID,Cole Hank M.2ORCID,Melgar Diego1ORCID

Affiliation:

1. 1Department of Earth Sciences, University of Oregon, Eugene, Oregon, U.S.A.

2. 2U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, U.S.A.

Abstract

ABSTRACT The foundation of earthquake monitoring is the ability to rapidly detect, locate, and estimate the size of seismic sources. Earthquake magnitudes are particularly difficult to rapidly characterize because magnitude types are only applicable to specific magnitude ranges, and location errors propagate to substantial magnitude errors. We developed a method for rapid estimation of single-station earthquake magnitudes using raw three-component P waveforms observed at local to teleseismic distances, independent of prior size or location information. We used the MagNet regression model architecture (Mousavi and Beroza, 2020b), which combines convolutional and recurrent neural networks. We trained our model using ∼2.4 million P-phase arrivals labeled by the authoritative magnitude assigned by the U.S. Geological Survey. We tested input data parameters (e.g., window length) that could affect the performance of our model in near-real-time monitoring applications. At the longest waveform window length of 114 s, our model (Artificial Intelligence Magnitude [AIMag]) is accurate (median estimated magnitude within ±0.5 magnitude units from catalog magnitude) between M 2.3 and 7.6. However, magnitudes above M ∼7 are more underestimated as true magnitude increases. As the windows are shortened down to 1 s, the point at which higher magnitudes begin to be underestimated moves toward lower magnitudes, and the degree of underestimation increases. The over and underestimation of magnitudes for the smallest and largest earthquakes, respectively, are potentially related to the limited number of events in these ranges within the training data, as well as magnitude saturation effects related to not capturing the full source time function of large earthquakes. Importantly, AIMag can determine earthquake magnitudes with individual stations’ waveforms without instrument response correction or knowledge of an earthquake’s source-station distance. This work may enable monitoring agencies to more rapidly recognize large, potentially tsunamigenic global earthquakes from few stations, allowing for faster event processing and reporting. This is critical for timely warnings for seismic-related hazards.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3