A New Spatial Variation Model for Ground-Motion Intensities Combined with Correlation and Coherency

Author:

Wen Pan1,Zhou Baofeng2,Shao Guoliang3ORCID

Affiliation:

1. 1College of Civil Engineering, Yantai University, Yantai, People’s Republic of China

2. 2Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, People’s Republic of China

3. 3China IPPR International Engineering Co., Ltd., Beijing, China

Abstract

Abstract Regional seismic risk or loss assessments generally require simulation of spatially distributed ground motions using multiple intensity measures. Hence, in this study, ground-motion model estimation is performed with a spatial correlation. Previously, many researchers have analyzed spatial correlations and developed empirical models using ground-motion recordings. In this study, ground motions occurring in California between 2019 and 2023 were used to analyze spatial correlations using semivariograms for the peak ground acceleration and pseudospectral acceleration in various spectral periods. Based on the analysis results, two aspects need to be revised in the conventional correlation model: (1) the empirical exponential model cannot reasonably reflect the target spatial correlation at a separation distance <10 km, and (2) the variation in the spatial correlation ground-motion intensity cannot be described at a small separation distance <1 km. Owing to these limitations, we revised the fitting model of the semivariogram to better characterize the spatial correlation. In the model, another function called coherency, replaced the spatial correlation to characterize the variation in the Fourier phase rather than the intensity within a separation distance <1 km. This research shows that the spatial variation in any region can be analyzed by combining the coherence and correlation functions for practical seismic-risk or loss assessment problems.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3