Hydrology Drives Crustal Deformation and Modulates Seismicity in the Matese Massif (Italy)

Author:

Pintori Francesco1ORCID,Sparacino Federica2ORCID,Riguzzi Federica3

Affiliation:

1. 1Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy

2. 2Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy

3. 3Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Rome, Italy

Abstract

Abstract We analyze the interplay between hydrology, deformation, and seismicity in the Matese massif, located in the Italian Southern Apennines. We find that this area is characterized by the concurrent action of two hydrologically driven processes: the first is the deformation detected by the Global Navigation Satellite Systems (GNSS) data in the shallowest part (above the elevation of the major springs) of the Earth crust, in phase with the hydrological forcing; the second is the triggering of seismicity at depth with a delay suggesting a downward diffusive process. We study the first process by applying a principal component analysis to the GNSS displacements time series, aiming to identify a common signal describing the largest data variance. We find that the maximum horizontal displacements associated with the first principal component (PC1) are larger than 1 cm in two GNSS sites, and the PC1 temporal evolution is well correlated and in phase with the flow of the largest spring of the region, which we consider as proxy of the water content of the massif. This suggests that the main source of horizontal deformation is the water content fluctuations in the shallow portion of the Matese aquifer, in particular within fractures located in correspondence of the main mapped faults. The deformation rates caused by this process are one order of magnitude larger than the tectonic ones. Finally, we infer the second process by observing the correlation between the background seismicity and the spring discharge with a time lag of 121 days. In our interpretation, downward diffusive processes, driven by aquifer water content variations, propagate pore-pressure waves that affect the fault’s strength favoring the occurrence of microearthquakes. This is supported by the values of hydraulic diffusivity (1.5  m2/s) and rock permeability (3.2–3.8×10−13  m2), which are compatible with what is observed in karstified limestones.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3