A Statistical Approach to Estimate Seismic Monitoring Stations’ Biases and Error Levels

Author:

Radzyner Yael1,Galun Meirav2ORCID,Nadler Boaz2ORCID

Affiliation:

1. 1Soreq Nuclear Research Center, Yavne, Israel

2. 2Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Abstract

ABSTRACT Magnitudes are common and important measures for the size of seismic events. The International Data Centre (IDC) of the Comprehensive Nuclear-Test Ban Treaty Organization estimates an event magnitude by averaging the magnitudes calculated by individual stations that detected the event, excluding outliers. This approach assumes that all station magnitudes have the same error level and are unbiased, namely, they have no systematic errors. We show that the body-wave and surface-wave magnitudes published in the Reviewed Event Bulletin (REB) of the IDC are inconsistent with these assumptions. We thus consider a model where each station has an unknown bias and error level. Given a large collection of reported event magnitudes by a network of monitoring stations, we propose a novel approach to estimate each individual station’s bias and error level. From a statistical perspective, this is a challenging problem involving a huge number of variables, because in addition to the stations’ biases and error levels, the event magnitudes are also unknown. Our approach is based on analyzing differences between reported magnitude values at pairs of stations, which cancels out the unknown event magnitudes and allows us to derive a simple and computationally efficient algorithm. We use the estimated station biases as station correction terms and the estimated error levels to compute weights for event magnitude estimation. Using a large data set from the REB with millions of reported station magnitudes, we show that our approach yields more consistent station and event magnitudes.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Reference23 articles.

1. Statistical methods in seismology;Anderson;Wiley Interdiscip. Rev.,2010

2. Earthquake magnitude—Recent research and current trends;Båth;Earth Sci. Rev.,1981

3. New manual of seismological observatory practice (NMSOP-2);Bormann,2012

4. Statistical models for seismic magnitude;Christoffersson;Phys. Earth Planet. In.,1980

5. Performance of the international monitoring system seismic network based on ambient seismic noise measurements;Gaebler;Pure Appl. Geophys.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3