Time-Dependent Probabilistic Seismic Hazard Analysis for Seismic Sequences Based on Hybrid Renewal Process Models

Author:

Xu Ming-Yang12ORCID,Lu Da-Gang12ORCID,Zhou Wei12ORCID

Affiliation:

1. 1Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, China

2. 2School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Abstract

ABSTRACT Probabilistic seismic hazard analysis (PSHA) is a methodology with a long history and has been widely implemented. However, in the conventional PSHA and sequence-based probabilistic seismic hazard analysis (SPSHA) approaches, the occurrence of mainshocks is modeled as the homogeneous Poisson process, which is unsuitable for large earthquakes. To account for the stationary occurrence of small-to-moderate (STM) mainshocks and the nonstationary behavior of large mainshocks, we propose a time-dependent sequence-based probabilistic seismic hazard analysis (TD-SPSHA) approach by combining the time-dependent mainshock probabilistic seismic hazard analysis (TD-PSHA) and aftershock probabilistic seismic hazard analysis, consisting of four components: (1) STM mainshocks, (2) aftershocks associated with STM mainshocks, (3) large mainshocks, and (4) aftershocks associated with large mainshocks. The approach incorporates an exponential-magnitude, exponential-time model for STM mainshocks, and a renewal-time, characteristic-magnitude model for large mainshocks to assess the time-dependent hazard for mainshocks. Then nonhomogeneous Poisson process is used to model the occurrence of associated aftershocks, in which the aftershock sequences can be modeled using the Reasenberg and Jones (RJ) model or the epidemic-type aftershock sequence (ETAS) model. To demonstrate the proposed TD-SPSHA approach, a representative site of the San Andreas fault is selected as a benchmark case, for which five time-dependent recurrence models, including normal, lognormal, gamma, Weibull, and Brownian passage time (BPT) distributions, are chosen to determine the occurrence of large mainshocks. Then sensitivity tests are presented to show the effects on TD-SPSHA, including (1) time-dependent recurrence models, (2) mainshock magnitude, (3) rupture distance, (4) aftershock duration, (5) escaped time since the last event, and (6) future time interval. Furthermore, the bimodal hybrid renewal model is utilized by TD-SPSHA for another case site. The comparison results illustrate that the sequence hazard analysis approach ignoring time-varying properties of large earthquakes for long periods and the effects of associated aftershocks will result in a significantly underestimated hazard. The TD-SPSHA-based hazard curves using the ETAS model are larger than those of the RJ model. The proposed TD-SPSHA approach may be of significant interest to the field of earthquake engineering, particularly in the context of structural design or seismic risk analysis for the long term.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3