The Seismic Record of Wind in Alaska

Author:

Quigley Cade A.1ORCID,West Michael E.2ORCID

Affiliation:

1. 1Department of Geology, Colorado College, Colorado Springs, Colorado, U.S.A.

2. 2Alaska Earthquake Center, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, U.S.A.

Abstract

ABSTRACT Seismic data contains a continuous record of wind influenced by different factors across the frequency spectrum. To assess the influences of wind on ground motion, we use colocated wind and seismic data from 110 stations in the Alaska component of the EarthScope Transportable Array. We compare seismic probability power spectral densities and wind speed and direction during 2018 to develop a quantitative measure of the seismic sensitivity to wind. We observe a pronounced increase in seismic energy as a function of wind speed for almost all stations. At frequencies below the microseism band, our observations agree with previous authors in finding that sensor emplacement and ground materials are important, and that much of the wind influence likely comes from associated changes in barometric pressure. Wind has the least influence in the microseism band, but that is only because its contribution to noise is much smaller than the ubiquitous microseism background. At frequencies above the microseism band, we find that wind sensitivity is correlated with land cover type, increasing with vegetation height. This sensitivity varies seasonally, which we attribute to snow insulation, the burial of vegetation and objects around the station, and potentially the role of frozen ground. Wind direction also manifests in seismic data, which we attribute to turbulent air on the lee side of station huts coupling with the ground and the seismometer borehole cap. We find some dependence on bedrock type, with a greater seismic response in unconsolidated sediment. These results provide guidance on site selection and construction, and make it possible to forecast seismic network performance under different wind conditions. When we examine the factors at work in a warming climate, we find reason to anticipate increasing seismic noise from wind in the Arctic over the decades to come.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3