Implementation of Iwan-Type Nonlinear Rheology in a 3D High-Order Staggered-Grid Finite-Difference Method

Author:

Roten Daniel1ORCID,Yeh Te-Yang2ORCID,Olsen Kim B.2ORCID,Day Steven M.2ORCID,Cui Yifeng1ORCID

Affiliation:

1. 1San Diego Supercomputer Center, University of California San Diego, La Jolla, California, U.S.A.

2. 2Department of Earth and Environmental Sciences, San Diego State University, San Diego, California, U.S.A.

Abstract

ABSTRACT We have implemented and verified a parallel-series Iwan-type nonlinear model in a 3D fourth-order staggered-grid velocity–stress finite-difference method. The Masing unloading and reloading behavior is simulated by tracking an overlay of concentric von Mises yield surfaces. Lamé parameters and failure stresses pertaining to each surface are calibrated to reproduce the stress–strain backbone curve, which is controlled by the reference strain assigned to a given depth level. The implementation is successfully verified against established codes for 1D and 2D SH-wave benchmarks. The capabilities of the method for large-scale nonlinear earthquake modeling are demonstrated for an Mw 7.8 dynamic rupture ShakeOut scenario on the southern San Andreas fault. Although ShakeOut simulations with a single yield surface reduces long-period ground-motion amplitudes by about 25% inside a waveguide in greater Los Angeles, Iwan nonlinearity further reduces the values by a factor of 2. For example, inside the Whittier Narrows corridor spectral accelerations at a period of 3 s are reduced from 1g in the linear case to about 0.8 in the bilinear case and to 0.3–0.4g in the multisurface Iwan nonlinear case, depending on the choice of reference strain. Normalized shear modulus reductions reach values of up to 50% in the waveguide and up to 75% in the San Bernardino basin at the San Andreas fault. We expect the implementation to be a valuable tool for future nonlinear 3D dynamic rupture and ground-motion simulations in models with coupled source, path, and site effects.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3