Kinematic Rupture Model of the 6 February 2023 Mw 7.8 Türkiye Earthquake from a Large Set of Near-Source Strong-Motion Records Combined with GNSS Offsets Reveals Intermittent Supershear Rupture

Author:

Delouis Bertrand1ORCID,van den Ende Martijn1ORCID,Ampuero Jean-Paul1ORCID

Affiliation:

1. 1Université Côte d’Azur, CNRS, IRD, Observatoire de la Côte d’Azur, Géoazur, Valbonne, France

Abstract

ABSTRACT The 2023 Mw 7.8 southeast Türkiye earthquake was recorded by an unprecedentedly large set of strong-motion stations very close to its rupture, opening the opportunity to observe the rupture process of a large earthquake with fine resolution. Here, the kinematics of the earthquake source are inferred by finite-source inversion based on strong-motion records and coseismic offsets from permanent Global Navigation Satellite Systems stations. The strong-motion records at stations NAR and 4615, which are the closest to the splay fault (SPF) where the rupture initiated and which were previously interpreted to contain the signature of supershear rupture speeds, are successfully modeled here by a subshear rupture propagating unilaterally to the northeast. Once the rupture on the SPF reaches the east Anatolian fault (EAF), it propagates on the EAF bilaterally, extending about 120 km northeast and 180 km southwest. To the south, the depth extent of the rupture decreases, as it passes a bend of the EAF. Although the rupture velocity remains globally subshear along the EAF, we identify three portions of the fault where the rupture is transiently supershear. The transitions to supershear speed coincide with regions of reduced fault slip, which suggests supershear bursts generated by the failure of local rupture barriers. Toward the southwest termination, the rupture encircles an asperity before its failure, which is a feature that has been observed only on rare occasions. This unprecedented detail of the inversion was facilitated by the proximity to the fault and the exceptional density of the accelerometric network in the area.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3