New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement

Author:

Wells Donald L.1,Coppersmith Kevin J.1

Affiliation:

1. Geomatrix Consultants, Inc. San Francisco, California 94111

Abstract

Abstract Source parameters for historical earthquakes worldwide are compiled to develop a series of empirical relationships among moment magnitude (M), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the additional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the following trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface displacement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface displacement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, showing standard deviations of 0.25 to 0.35 magnitude units. Most relationships are not statistically different (at a 95% significance level) as a function of the style of faulting: thus, we consider the regressions for all slip types to be appropriate for most applications. Regressions between magnitude and displacement, magnitude and rupture width, and between displacement and rupture length are less well correlated and have larger standard deviation than regressions between magnitude and length or area. The large number of data points in most of these regressions and their statistical stability suggest that they are unlikely to change significantly in response to additional data. Separating the data according to extensional and compressional tectonic environments neither provides statistically different results nor improves the statistical significance of the regressions. Regressions for cases in which earthquake magnitude is either the independent or the dependent parameter can be used to estimate maximum earthquake magnitudes both for surface faults and for subsurface seismic sources such as blind faults, and to estimate the expected surface displacement along a fault for a given size earthquake.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Reference64 articles.

1. Magnitudes of large shallow earthquakes from 1904-1980;Abe;Phys. Earth Planet. Interiors,(1981)

2. Determination of magnitude for large shallow earthquakes 1898-1917;Abe;Phys. Earth Planet. Interiors,(1983)

3. Revision of magnitudes of large shallow earthquakes, 1897-1912;Abe;Phys. Earth Planet. Interiors,(1983)

4. Regional variations in the rupture-length magnitude relationships and their dynamical significance;Acharya;Bull. Seism. Soc. Am.,(1979)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3