Development of a GIS-Based Predicted-VS30 Map of Türkiye Using Geological and Topographical Parameters: Case Study for the Region Affected by the 6 February 2023 Kahramanmaraş Earthquakes

Author:

Sahin Gokhan1ORCID,Okalp Kivanc1ORCID,Kockar Mustafa K.1ORCID,Yilmaz Mustafa T.2ORCID,Jalehforouzan Amir2ORCID,Temiz Faik A.3,Askan Aysegul4ORCID,Akgun Haluk5ORCID,Erberik Murat A.4ORCID

Affiliation:

1. 1Department of Civil Engineering, Hacettepe University, Ankara, Türkiye

2. 2Department of Engineering Science, Middle East Technical University (METU), Ankara, Türkiye

3. 3Disaster and Emergency Management Presidency of Türkiye, Ankara, Türkiye

4. 4Departments of Civil Engineering and Earthquake Studies, Middle East Technical University (METU), Ankara, Türkiye

5. 5Geotechnology Unit, Department of Geological Engineering, Middle East Technical University (METU), Ankara, Türkiye

Abstract

Abstract The time-averaged shear-wave velocity in the upper 30 m of a site (VS30) is virtually essential in characterizing local soil conditions for multiple purposes, including estimation of site effects, anticipated ground-motion levels, seismic hazards, and the shape of design spectra. Considering the significance of this proxy and that a number of the Disaster and Emergency Management Presidency of Türkiye (AFAD) strong ground-motion stations across Türkiye lack assigned VS30 values, a comprehensive study was performed herein to develop empirical equations for estimating VS30 values in Türkiye based on relationships between 432 VS30 measurements at the AFAD stations, geologic units, and topographic data. Initially, units in the geological digital maps were reclassified into four geological periods. Statistical relationships between geological period classes and VS30 samples were interpreted to determine the VS30 boundaries for each period class. Second, VS30 estimations with topographic parameters by utilizing a 2D trend surface analysis method were performed. The resultant two-parameter polynomial coefficients were associated with VS30 according to the least squares principle, leading to the development of topographic functions for VS30 estimation under each geological period class (R2=0.601). Thereby, digital VS30 estimation maps were produced in grid (90 m) format that may be queried in a Geographic Information Systems environment. Moreover, the quantile regression method was also utilized to determine the coefficients of the envelope curve corresponding to a given exceedance probability (p) for the worst case scenario. Finally, to evaluate the accuracy of the proposed equations, the verifications performed with the VS30 data at the selected AFAD stations in the region affected by the 6 February 2003 earthquakes have also presented successful outcomes. Considering the availability of VS30 maps derived from digital elevation data in the literature, this study offers novel equations that take into account geological units and provide crucial background data for the regional seismic hazard-based risk assessments in Türkiye, especially for site effect studies using VS30 as a regional site classification parameter.

Publisher

Seismological Society of America (SSA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3