Impact of Lossy Compression Errors on Passive Seismic Data Analyses

Author:

Issah Abdul Hafiz S.1ORCID,Martin Eileen R.12ORCID

Affiliation:

1. 1Colorado School of Mines, Golden, Colorado, U.S.A.

2. 2Virginia Tech, Blacksburg, Virginia, U.S.A.

Abstract

Abstract New technologies such as low-cost nodes and distributed acoustic sensing (DAS) are making it easier to continuously collect broadband, high-density seismic monitoring data. To reduce the time to move data from the field to computing centers, reduce archival requirements, and speed up interactive data analysis and visualization, we are motivated to investigate the use of lossy compression on passive seismic array data. In particular, there is a need to not only just quantify the errors in the raw data but also the characteristics of the spectra of these errors and the extent to which these errors propagate into results such as detectability and arrival-time picks of microseismic events. We compare three types of lossy compression: sparse thresholded wavelet compression, zfp compression, and low-rank singular value decomposition compression. We apply these techniques to compare compression schemes on two publicly available datasets: an urban dark fiber DAS experiment and a surface DAS array above a geothermal field. We find that depending on the level of compression needed and the importance of preserving large versus small seismic events, different compression schemes are preferable.

Publisher

Seismological Society of America (SSA)

Reference24 articles.

1. Low bit-rate efficient compression for seismic data;Averbuch;IEEE Trans. Image Process.,2001

2. Evaluating lossy data compression on climate simulation data within a large ensemble;Baker;Geosci. Model Dev.,2016

3. Seismic data compression using wavelet transforms;Bosman,1993

4. Brady’s geothermal field—metadata for DTS and DAS surveys;Coleman,2016

5. Error analysis of zfp compression for floating-point data;Diffenderfer;SIAM J. Sci. Comput.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3