SSA2py: A High-Performance Python Implementation of the Source-Scanning Algorithm for Spatiotemporal Seismic Source Imaging

Author:

Fountoulakis Ioannis12ORCID,Evangelidis Christos P.1ORCID

Affiliation:

1. 1Institute of Geodynamics, National Observatory of Athens, Athens, Greece

2. 2Department of Geology, University of Patras, Patras, Greece

Abstract

Abstract This article introduces the first version of SSA2py (v.1.0)—an open-source package designed to implement the source-scanning algorithm (SSA). SSA2py is a Python-based, high-performance-oriented package that incorporates the SSA method, which has been effectively applied to numerous earthquakes for imaging the spatiotemporal behavior of the seismic source. The software supports a wide range of data and metadata resources. These include the International Federation of Digital Seismograph Networks Web Services, the SeedLink protocol, and others, ensuring optimal access to waveforms and station metadata. Furthermore, the code may evaluate the quality of accessible waveforms using signal analysis methods, allowing for the most appropriate data selection. The SSA method has been computationally optimized using multiprocessing techniques for efficient central processing unit and graphic processing units executions, enabling considerably accelerated computational processes even for large-scale grid searches. The program is also designed to provide statistical and methodological uncertainties for the executed cases through jackknife, bootstrap, and backprojection array response function tests. After appropriate tuning by the user, SSA2py can be used for detailed earthquake source studies that backprojection technique typically serves as a complementary output to the source inversion result or as a near-real-time tool for successful and quick identification of the style and complexity of the earthquake rupture. With a wide and flexible configuration, the user has complete control over all calculating aspects of SSA2py. This article provides a detailed description of the structure and capabilities of this new package, and its reliability is demonstrated through targeted applications to the 2004 Mw 6.0 Parkfield and 2019 Mw 7.1 Ridgecrest earthquakes. Furthermore, the computational efficiency of SSA2py is validated through rigorous performance tests.

Publisher

Seismological Society of America (SSA)

Reference67 articles.

1. A high-frequency secondary event during the 2004 Parkfield earthquake;Allmann;Science,2007

2. Recurrence models and Parkfield, California, earthquakes;Bakun;J. Geophys. Res.,1984

3. ObsPy: A Python toolbox for seismology;Beyreuther;Seismol. Res. Lett.,2010

4. A broadband, wide dynamic range, strong-motion network near Parkfield, California USA for measurement of acceleration and volumetric strain;Borcherdt,1988

5. The TauP toolkit: Flexible seismic travel-time and ray-path utilities;Crotwell;Seismol. Res. Lett.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3