Distributed Acoustic Sensing for Crowd Motion and Firecracker Explosions in the Fireworks Show

Author:

Lin Jiangnan12ORCID,Jiang Wenbin12ORCID,Zhou Yong34ORCID,Liu Bin12,Zhao Minghui345ORCID,Xiao Zhuo346ORCID,Cao Lingmin34ORCID,Xu Min34ORCID

Affiliation:

1. 1Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China

2. 2National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China

3. 3CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

4. 4Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

5. 5University of Chinese Academy of Sciences, Beijing, China

6. 6Now at, Guangxi Minzu University, Nanning, China

Abstract

Abstract Urban seismology has recently emerged as a vibrant scientific field, driven by the growing interest in seismic signals generated by major public events, sports gatherings, and transportation services. However, deploying dense traditional seismometers in economically active, densely populated urban areas with heavy traffic poses significant challenges. In this study, we conducted a field experiment utilizing distributed acoustic sensing (DAS) technology during a fireworks display in Guangzhou on 5 February 2023. About 572 m of optical fiber was turned into 286 seismic sensors and deployed on LingShan Island to monitor various vibration signals generated during the fireworks show. Our analysis revealed substantial correlations between crowd motions during different phases of the event and ambient noise features recorded by DAS. Moreover, the cross-correlation functions of the ambient noise with its dispersion characteristics pointed to near-field pedestrian activity as the primary noise source. Real-time heat maps of human crowd motions were reconstructed from DAS recording, offering significant insights into the variations of activity intensity across different locations. Discerning fireworks events on the DAS array is more effective than on a scattered seismometer array, because it is easier to ensure that the same event is picked for all the sites in the DAS dense linear configuration. The DAS data inspection allowed us to pick up a total of 549 firecracker explosions in comparison to the seismometer data that only allowed us to detect 116 firecracker events. The heights of fireworks were located by the grid-search method and predominantly distributed at 75–300 m, closely aligning with actual fireworks explosion locations. Our findings underscore that the DAS technology can monitor crowd motion and detect vibration signals in the air, bridging the gap between fundamental earth science research and human social activities.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3