Long-Term Infrasound Sensor Calibration and Characterization

Author:

Fee David1ORCID,Merchant Bion John2ORCID

Affiliation:

1. 1Wilson Alaska Technical Center, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, U.S.A.

2. 2Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

Abstract

Abstract Previous testing has shown that infrasound sensors deployed in the field can exhibit notable deviations from their nominal, lab-based calibrations. These variations may be due to changes in environmental conditions, long-term sensor drift, or other unresolved features. In early 2018, we installed two identical infrasound elements with five infrasound sensors at each element (Chaparral M50A, Chaparral M64LN, CEA/Martec MB2005, CEA/Seismowave MB3a, and Hyperion IFS-5113A). These sensors were accepted or under consideration for use in the International Monitoring System network of the Comprehensive Nuclear-Test-Ban Treaty. Each element had all sensors connected to a single digitizer and port to the atmosphere. We also recorded instrument enclosure air temperature and humidity and external air temperature. Using the MB2005 as the reference, we examine the relative sensor response (both magnitude and phase) as a function of time and frequency and compare it with quarterly laboratory calibrations and environmental conditions. We find that the magnitude response for all sensors exhibits some variability in both the lab and field, with the amplitude variations often >5%. The field-based variations are more severe and occur on both long-term (months) and short-term (hours) timescales. Short-term variability correlates with changes in environmental conditions and is considerable (up to 25%) for the Chaparral M50A and noticeable (∼5%) for the French Alternative Energies and Atomic Energy Commission (CEA) MB3a. Long-term magnitude variability for the Chaparral M50A was up to 50% and does not clearly correlate with environmental conditions. The other sensors show some long-term magnitude offsets, but they have relatively stable responses in the conditions we examined. The MB3a also displays some frequency-dependent magnitude variability and shows a minor dependence on temperature. Phase estimates are stable and near zero for all sensors tested. These results strongly suggest sensor response and variability due to environmental conditions should be considered in future infrasound data interpretation and sensor selection and development.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3