Calibrating the 2016 IRIS Wavefields Experiment Nodal Sensors for Amplitude Statics and Orientation Errors

Author:

Bolarinwa Oluwaseyi J.1,Langston Charles A.1

Affiliation:

1. Center for Earthquake Research and Information, University of Memphis, Memphis, Tennessee, U.S.A.

Abstract

ABSTRACT We used teleseismic P and S waves recorded in the course of the 2016 Incorporated Research Institutions for Seismology (IRIS) community-planned experiment in northern Oklahoma, to estimate amplitude correction factors (ACFs) and orientation correction factors (OCFs) for the gradiometer’s three-component Fairfield nodal sensors and two other gradiometer-styled subarray nodal sensors. These subarrays were embedded in the 13 km aperture nodal array that was also fielded during the 2016 IRIS experiment. The array calibration method we used in this study is based on the premise that a common wavefield should be recorded over a small-aperture array using teleseismic observation. In situ estimates of ACF for the gradiometer vary by 2.3% (standard deviation) for the vertical components and, typically, variability is less than 4.3% for the horizontal components; associated OCFs generally dispersed by 3°. For the two subarrays, the vertical-component ACF usually vary up to 2.4%; their horizontal-component ACFs largely spread up to 3.6%. OCFs for the subarrays generally disperse by 6.5°. ACF and OCF estimates for the gradiometer are seen to be stable across frequency bands having high signal coherence and/or signal-to-noise ratio. Gradiometry analyses of calibrated and uncalibrated gradiometer records from a local event revealed notable improvements in accuracy of attributes obtained from analyzing the calibrated horizontal-component waveforms in the light of catalog epicenter-derived azimuth. The improved waveform relative amplitudes after calibration, coupled with the enhanced wave attribute accuracy, suggests that instrument calibration for amplitude statics and orientation errors should be encouraged prior to doing gradiometry analysis in future studies.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3