Rayleigh-Wave Amplitude Uncertainty across the Global Seismographic Network and Potential Implications for Global Tomography

Author:

Ringler Adam T.1ORCID,Anthony Robert E.1ORCID,Dalton Colleen A.2ORCID,Wilson David C.1ORCID

Affiliation:

1. U.S. Geological Survey, Albuquerque Seismological Laboratory, Albuquerque, New Mexico, U.S.A.

2. Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, U.S.A.

Abstract

ABSTRACT The Global Seismographic Network (GSN) is a multiuse, globally distributed seismic network used by seismologists, to both characterize earthquakes and study the Earth’s interior. Most stations in the network have two collocated broadband seismometers, which enable network operators to identify potential metadata and sensor issues. In this study, we investigate the accuracy with which surface waves can be measured across the GSN, by comparing waveforms of vertical-component Rayleigh waves from Mw 6 and larger events between collocated sensor pairs. We calculate both the amplitude deviation and correlation coefficient between waveforms at sensor pairs. In total, we make measurements on over 670,000 event–station pairs from events that occurred from 1 January 2010 to 1 January 2020. We find that the average sensor-pair amplitude deviation, and, therefore, GSN calibration level, is, approximately, 4% in the 25–250 s period band. Although, we find little difference in sensor-pair amplitude deviations as a function of period across the entire network, the amount of useable data decreases rapidly as a function of increasing period. For instance, we determined that just over 12% of records at 250 s period provided useable recordings (e.g., sensor-pair amplitude deviations of less than 20% and sensor-pair correlation greater than 0.95). We then use these amplitude-estimate deviations to identify how data coverage and quality could be limiting our ability to invert for whole Earth 3D attenuation models. We find an increase in the variance of our attenuation models with increasing period. For example, our degree 12 attenuation inversion at 250 s period shows 32% more variance than our degree 12 attenuation model at 25 s. This indicates that discrepancies of deep-mantle tomography between studies could be the result of these large uncertainties. Because these high uncertainties arise from limited, high-quality observations of long-period (>100  s) surface waves, improving data quality at remote GSN sites could greatly improve ray-path coverage, and facilitate more accurate and higher resolution models of deep Earth structure.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3