Revisiting California’s Past Great Earthquakes and Long-Term Earthquake Rate

Author:

Hough Susan E.1,Page Morgan1,Salditch Leah23,Gallahue Molly M.2,Lucas Madeleine C.2,Neely James S.23,Stein Seth23

Affiliation:

1. U.S. Geological Survey, Pasadena, California, U.S.A.

2. Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, U.S.A.

3. Institute for Policy Research, Northwestern University, Evanston, Illinois, U.S.A.

Abstract

ABSTRACT In this study, we revisit the three largest historical earthquakes in California—the 1857 Fort Tejon, 1872 Owens Valley, and 1906 San Francisco earthquakes—to review their published moment magnitudes, and compare their estimated shaking distributions with predictions using modern ground-motion models (GMMs) and ground-motion intensity conversion equations. Currently accepted moment magnitude estimates for the three earthquakes are 7.9, 7.6, and 7.8, respectively. We first consider the extent to which the intensity distributions of all three earthquakes are consistent with a moment magnitude toward the upper end of the estimated range. We then apply a GMM-based method to estimate the magnitudes of large historical earthquakes. The intensity distribution of the 1857 earthquake is too sparse to provide a strong constraint on magnitude. For the 1872 earthquake, consideration of all available constraints suggests that it was a high stress-drop event, with a magnitude on the higher end of the range implied by scaling relationships, that is, higher than moment magnitude 7.6. For the 1906 earthquake, based on our analysis of regional intensities and the detailed intensity distribution in San Francisco, along with other available constraints, we estimate a preferred moment magnitude of 7.9, consistent with the published estimate based on geodetic and instrumental seismic data. These results suggest that, although there can be a tendency for historical earthquake magnitudes to be overestimated, the accepted catalog magnitudes of California’s largest historical earthquakes could be too low. Given the uncertainties of the magnitude estimates, the seismic moment release rate between 1850 and 2019 could have been either higher or lower than the average over millennial time scales. It is further not possible to reject the hypothesis that California seismicity is described by an untruncated Gutenberg–Richter distribution with a b-value of 1.0 for moment magnitudes up to 8.0.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3