Stress Interactions between an Interplate Thrust Earthquake and an Intraplate Strike-Slip Event: A Case Study of 2018 Mw 7.9 Gulf of Alaska Earthquake

Author:

Huang Luyuan1,Tao Tao2,Gao Rui3,Shi Yaolin4

Affiliation:

1. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China

2. Institute of Geo-mechanics, Chinese Academy of Geological Sciences, Beijing, China

3. Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China

4. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing, China

Abstract

ABSTRACT Most major earthquakes that have occurred in Alaska are related to rupture of the megathrust along the Alaska–Aleutian subduction zone. Large intraplate earthquakes in the oceanic lithosphere are rare. Recently, one large intraplate earthquake occurred near the Alaska subduction zone: the Mw 7.9 Gulf of Alaska earthquake (23 January 2018). The stress interaction between interplate megathrust and intraplate earthquake has been of interest because it helps to understand stress transfer and seismic hazard estimation. To explore the phenomenon of stress transfer, a viscoelastic spherical finite-element-method model accounting for topographic relief and lateral viscosity variations was used to calculate time-dependent stress transfer associated with the 1964 Mw 9.2 Alaska earthquake. We used postseismic Global Positioning System measurements to probe the differences in rheological properties between the continental mantle and oceanic mantle. The best-fitting model determined the viscosities of the continental mantle and oceanic mantle to be 3×1019 and 1×1020  Pa·s, respectively. Then, we calculated the viscoelastic stress transfers based on this viscosity structure. Because of viscoelastic stress loading associated with the 1964 Alaska earthquake, the ΔCFS values on the 2018 Alaska earthquake rupture fault exceeded the threshold (0.01 MPa) for triggering earthquakes.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3