Observation of Higher-Mode Surface Waves from an Active Source in the Hutubi Basin, Xinjiang, China

Author:

Ji Zhanbo123ORCID,Wang Baoshan245ORCID,Yang Wei2,Wang Weitao2,Su Jinbo26,Wei Bin6ORCID,Wang Haitao7,Hu Tianyue3ORCID

Affiliation:

1. Chinese Academy of Geological Sciences, Beijing, China

2. Institute of Geophysics, China Earthquake Administration, Beijing, China

3. School of Earth and Space Sciences, Peking University, Beijing, China

4. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

5. Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei, China

6. Earthquake Agency of Xinjiang Uygur Autonomous Region, Urumqi, China

7. China Earthquake Networks Center, Beijing, China

Abstract

ABSTRACT Basins with thick sediments can amplify and prolong the incoming seismic waves, which may cause serious damage to surface facilities. The amplification of seismic energy depends on the shear-wave velocity of the uppermost layers, which is generally estimated through surface wave analysis. Surface waves may propagate in different modes, and the mechanism of the mode development is not well understood. Exploiting a recently deployed permanent airgun source in the Hutubi basin, Xinjiang, northwest China, we conducted a field experiment to investigate the development of multimode surface waves. We observed surface waves at the frequency of 0.3–5.0 Hz with apparent group velocities of 200–900  m/s, and identified five modes of surface waves (three Rayleigh-wave modes and two Love-wave modes) through time–frequency and particle-motion analyses. We then measured 125 group velocity dispersion curves of the fundamental- and higher-mode surface waves, and further inverted the 1D S-wave velocity structure of the Hutubi basin. The S-wave velocity increases abruptly from 238  m/s at the surface to 643  m/s at 300 m depth. Synthetic seismograms with the inverted velocity structure capture the main features of the surface waves of the different modes. Synthetic tests suggest that the low velocity, high velocity gradient, and shallow source depth are likely the dominant contributing factors in the development of higher-mode surface waves.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3