Regional Calibration of Hybrid Ground-Motion Simulations in Moderate Seismicity Areas: Application to the Upper Rhine Graben

Author:

Razafindrakoto Hoby N. T.1ORCID,Cotton Fabrice12ORCID,Bindi Dino1ORCID,Pilz Marco1ORCID,Graves Robert W.3ORCID,Bora Sanjay4ORCID

Affiliation:

1. GFZ German Research Centre for Geosciences, Potsdam, Germany

2. University of Potsdam, Potsdam, Germany

3. U.S. Geological Survey, Pasadena, California, U.S.A.

4. IIT, Gandhinagar, Gujarat, India

Abstract

ABSTRACT This study presents the coupling of the spectral decomposition results for anelastic attenuation, stress drop, and site effects with the Graves-Pitarka (GP) hybrid ground-motion simulation methodology, as implemented on the Southern California Earthquake Center (SCEC) broadband platform (BBP). It is targeted to applications in the Upper Rhine graben (URG), which is among the seismically active areas in western Europe, yet a moderate seismicity area. Our development consists of three main steps: (1) calibration of regional high-frequency (HF) attenuation properties; (2) modification of the hybrid approach to add compressional waves in the HF computation and examine various strategies to evaluate site amplification factors in the Fourier domain (e.g., VS30-based or site-specific factors); (3) testing of the simulations using earthquake records from the URG (3.7<Mw<5). The validation process of the simulated time histories is performed first on rock sites, and, then subsequently at all stations, whatever their site conditions. The performance of the simulations for rock sites is assessed through the standard validation technique in the BBP (comparison of the waveforms, intensity measures, and estimation of the response spectra model bias). We additionally compare the Fourier amplitude spectrum of the simulations and observations, and compute their corresponding bias. The results show that the simulated ground motions match the general characteristics of the recorded motions, and that the model bias generally fluctuates around zero across the broadband frequency range. Hence, the hybrid ground-motion methodology implemented in the SCEC BBP can be successfully applied outside high-seismicity areas and outside those areas for which it had been generally calibrated. Our results also show that HF modification and calibration were necessary to improve the fits with the observation, and demonstrate the potential benefits of using site-specific amplification factors compared to VS30-based amplification factors.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3