Velocity Structure of the Northeastern End of the Bayan Har Block, China, and the Seismogenic Environment of the Jiuzhaigou and Songpan-Pingwu Earthquakes: Inferences from Double-Difference Tomography

Author:

Yang Wen12ORCID,Ding Zhifeng1ORCID,Liu Jie2,Cheng Jia3ORCID,Zhang Xuemei2ORCID,Wu Peng4,Yao Qi2

Affiliation:

1. Institute of Geophysics, China Earthquake Administration, Beijing, China

2. China Earthquake Networks Center, China Earthquake Administration, Beijing, China

3. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China

4. Sichuan Earthquake Administration, China Earthquake Administration, Chengdu, China

Abstract

ABSTRACT The 2017 Mw 6.5 Jiuzhaigou mainshock hit the northeastern end of the Bayan Har block, which has experienced many historical earthquakes, including the 1976 M 7.2 Songpan-Pingwu earthquake swarm. We used the double-difference tomography method to perform a joint inversion of the seismic source and P-wave velocity (VP) structure of the Jiuzhaigou-Songpan-Pingwu region. The results show significant lateral heterogeneity in the VP in the mid-upper crust. The velocity structure in the shallow crust correlates well with the surface geology. The Jiuzhaigou mainshock and Songpan-Pingwu earthquake swarm both occurred at the boundary between high- and low-VP anomalies. The Songpan-Pingwu earthquake swarm may be related to the eastward flow of low-viscosity material in the mid-lower crust of the Tibetan plateau. Low-viscosity material intrudes into the bedrock when it encounters the rigid Motianling massif, resulting in surface uplift and thrust earthquakes. By contrast, the Jiuzhaigou earthquake is associated with strain energy accumulating at the boundary between high- and low-VP anomalies related to the different movement rates of the low-VP material in the mid-lower crust and the high-VP body in the mid-upper crust. In this case, the high-VP body ruptures with a strike-slip sense to the southeast.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3