Stochastic Strong Ground Motion Simulation of the Southern Aegean Sea Benioff Zone Intermediate‐Depth Earthquakes

Author:

Kkallas Ch.1,Papazachos C. B.1,Margaris B. N.2,Boore D.3,Ventouzi Ch.1,Skarlatoudis A.1

Affiliation:

1. Geophysical Laboratory, Aristotle University of Thessaloniki, P.O. Box 352‐1, GR‐54124 Thessaloniki, Greece, chkkalla@geo.auth.gr, kpapaza@geo.auth.gr, xrusven@geo.auth.gr, askarlat@geo.auth.gr

2. Institute of Engineering Seismology and Earthquake Engineering (EPPO‐ITSAK), P.O. Box 53, Finikas, GR‐55102 Thessaloniki, Greece, margaris@itsak.gr

3. U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, California 94025, boore@usgs.gov

Abstract

Abstract We employ the stochastic finite‐fault modeling approach of Motazedian and Atkinson (2005), as adapted by Boore (2009), for the simulation of Fourier amplitude spectra (FAS) of intermediate‐depth earthquakes in the southern Aegean Sea subduction (southern Greece). To calibrate the necessary model parameters of the stochastic finite‐fault method, we used waveform data from both acceleration and broadband‐velocity sensor instruments for intermediate‐depth earthquakes (depths ∼45–140  km) with M 4.5–6.7 that occurred along the southern Aegean Sea Wadati–Benioff zone. The anelastic attenuation parameters employed for the simulations were adapted from recent studies, suggesting large back‐arc to fore‐arc attenuation differences. High‐frequency spectral slopes (kappa values) were constrained from the analysis of a large number of earthquakes from the high‐density EGELADOS (Exploring the Geodynamics of Subducted Lithosphere Using an Amphibian Deployment of Seismographs) temporary network. Because of the lack of site‐specific information, generic site amplification functions available for the Aegean Sea region were adopted. Using the previous source, path, and site‐effect constraints, we solved for the stress‐parameter values by a trial‐and‐error approach, in an attempt to fit the FAS of the available intermediate‐depth earthquake waveforms. Despite the fact that most source, path, and site model parameters are based on independent studies and a single source parameter (stress parameter) is optimized, an excellent comparison between observations and simulations is found for both peak ground acceleration (PGA) and peak ground velocity (PGV), as well as for FAS values. The final stress‐parameter values increase with moment magnitude, reaching large values (>300  bars) for events M≥6.0. Blind tests for an event not used for the model calibration verify the good agreement of the simulated and observed ground motions for both back‐arc and along‐arc stations. The results suggest that the employed approach can be efficiently used for the modeling of large historical intermediate‐depth earthquakes, as well as for seismic hazard assessment for similar intermediate‐depth events in the southern Aegean Sea area.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3