A Ground-Motion Prediction Equation for the Western and the Southwestern Parts of China Based on Local Strong-Motion Records and an Overseas Reference Model for the Vertical Component

Author:

Xing Hao1,Zhao John X.2ORCID

Affiliation:

1. Department of Geotechnical Engineering, School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, China

2. Key Laboratory of Building Structural Retrofitting and Underground Space Engineering, Ministry of Education, Jinan, Shandong Province, China

Abstract

ABSTRACT A ground-motion prediction equation for the vertical ground motions from the western and the southwestern parts of China (referred to as SWC) is presented in this study. Based on the Xing and Zhao (2021) study, the Zhao et al. (2017) model (referred to as ZHAO2017) for the shallow crustal earthquakes in Japan was used as the reference model. We used a bilinear magnitude-scaling function hinged at a moment magnitude (Mw) of 7.1. The magnitude-scaling rate for events with Mw>7.1 was determined by records from the SWC dataset and the large events in the Pacific Earthquake Engineering Research Center Next Generation Attenuation-West2 dataset. Site classes (SCs) were used as the site response proxy. All other parameters were derived from the SWC dataset only. The magnitude-scaling rates for events with Mw≤7.1 in this study are larger than in the ZHAO2017 model at most periods. The absolute values of the geometric attenuation rates are larger, and the absolute values of the anelastic attenuation rates are smaller than in the ZHAO2017 model. The between-event standard deviations are smaller than in the ZHAO2017 model at short periods, and the within-event standard deviations are larger than in the ZHAO2017 model at all periods. The differences in the between-site standard deviations vary significantly from one SC to another. We also find that the between-event and within-event residuals are almost independent of magnitude and source distance. The response spectrum attenuates less rapidly than in the ZHAO2017 model at distances less than 30 km.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3