Comparison of Single-Well Microseismic Focal Mechanism Inversions with Different Source Models

Author:

Li Han12ORCID,Chang Xu12,Hao Jinlai32,Wang Yibo12ORCID

Affiliation:

1. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China

3. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Abstract

ABSTRACT Through downhole monitoring, the focal mechanisms of microearthquakes can be quantitatively determined, thus providing valuable information for characterizing the fracturing process and the in situ stress status. The double-couple (DC) and moment tensor (MT) source models are commonly used to study microearthquakes. However, the DC model fails to include non-DC mechanisms, and MT inversion from single-well data is still challenging. One possible way to address this is using the shear–tensile general dislocation (GD) source model. We provide a detailed comparison of the DC, GD, and MT models, and introduce the differences in their modeling and inversion theories. These three models are described by four, five, and six parameters, and correspond to a single point, a straight line, and the entire space in the Hudson source-type plots, respectively. Both the DC and GD models yield nonlinear inversions, whereas the MT inversion is linear. Synthetic tests set up from a field single-well monitoring case are performed to study the resolvability of the DC, GD, and MT models in single-well focal mechanism inversions. The results indicate that the inversion error increases from DC→GD→MT for a single-well acquisition system, and the GD and DC inversions are both stable, whereas the MT inversion deviates from the inputs in cases with a perfectly vertical receiver array, 5% model velocity perturbations, 10 m horizontal source location errors, or 40% noise levels. We also find that the focal mechanism inversion mainly depends on the horizontal source–receiver azimuth coverage, and that the nonvertical well direction is helpful for constraining single-well inversions. According to our study, focal mechanism inversions based on the GD model can obtain reliable solutions from near-vertical single-well data, which will help improve non-DC earthquake studies.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3