Fault Displacement of the 2011 Mw 6.6 Fukushima-ken Hamadori Earthquake Based on a 3D Crustal Deformation Model Constructed Using Differential InSAR–Lidar

Author:

Aoyagi Yasuhira1ORCID,Kageshima Mitsukazu2,Onuma Takumi2,Homma Shinichi3,Mukoyama Sakae3

Affiliation:

1. Geology and Geotechnical Engineering Division, Central Research Institute of Electric Power Industry, Abiko, Japan

2. Geology Department, JGI Inc., Tokyo, Japan

3. Kokusai Kogyo Co., Ltd., Tokyo, Japan

Abstract

ABSTRACT 3D coseismic deformation detected by remote sensing yields essential information for estimating the geometry and slip distribution of the causative fault. However, it is often difficult to be obtained by a single observation method due to data acquisition constraints. This study constructs a 3D coseismic deformation model of the 2011 Fukushima-ken Hamadori earthquake by integrating Differential Interferometric Synthetic Aperture Radar (DInSAR), and differential light detection and ranging (Dlidar) analyses. Both horizontal and vertical movements observed are almost consistent with those of the theoretical dislocation model of normal faulting. The fault displacements measured within ±45 m of the rupture based on the 3D deformation model is also in good agreement with the possible maximum field displacements. Fault dips and lateral displacement components are also harmonious with the field survey measurements. Dlidar detects full 3D motion, whereas the DInSAR detects deformations too small for the light detection and ranging (lidar). Combining the two products is helpful to produce a more robust 3D displacement field than possible from the lidar alone.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3