Physics-Based Simulation of Spatiotemporal Patterns of Earthquakes in the Corinth Gulf, Greece, Fault System

Author:

Console Rodolfo12ORCID,Carluccio Roberto2ORCID,Murru Maura2ORCID,Papadimitriou Eleftheria3ORCID,Karakostas Vassilis3ORCID

Affiliation:

1. Center of Integrated Geomorphology for the Mediterranean Area, Potenza, Italy

2. Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

3. Geophysics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

ABSTRACT A physics-based earthquake simulation algorithm for modeling the long-term spatiotemporal process of strong (M ≥ 6.0) earthquakes in Corinth Gulf area, Greece, is employed and its performance is explored. The underlying physical model includes the rate- and state-dependent frictional formulation, along with the slow tectonic loading and coseismic static stress transfer. The study area constitutes a rapidly extending rift about 100 km long, where the deformation is taken up by eight major fault segments aligned along its southern coastline, and which is associated with several strong (M ≥ 6.0) earthquakes in the last three centuries, since when the historical earthquake catalog is complete. The recurrence time of these earthquakes and their spatial relation are studied, and the simulator results reveal spatiotemporal properties of the regional seismicity such as pseudoperiodicity as well as multisegment ruptures of strong earthquakes. As the simulator algorithm allows the display of the stress pattern on all the single elements of the fault, we are focusing on the time evolution of the stress level before, during, and after these earthquakes occur. In this respect, the spatiotemporal variation of the stress and its heterogeneity appear to be correlated with the process of preparation of strong earthquakes in a quantitative way.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3