Errors in hypocenter location: Picking, model, and magnitude dependence

Author:

Billings S. D.1,Sambridge M. S.1,Kennett B. L. N.1

Affiliation:

1. Research School of Earth Sciences Institute of Advanced Studies Australian National University Canberra, Australia

Abstract

Abstract The location procedures of seismic events are influenced by two major classes of errors, the error in picking individual seismic phases and modeling error due to the departure of the real Earth from the reference model used in the location. Both classes of error influence the estimate of location and it is difficult to separate them. The role of picking errors can be assessed by a nonlinear analysis using a Monte Carlo procedure. Arrivals times are perturbed with random numbers drawn from a normal distribution, and the event is relocated using these perturbed arrival times. By repeating the procedure many times, a cluster of locations is obtained, which can be used to investigate the effects of picking errors on the hypocenter. This analysis is insensitive to velocity-model errors as these are fixed for a given combination of stations and phases. Some care must be exercised when analysing multidimensional distributions in two-dimensional slices because of a projection effect. The modeling error due to the influence of lateral heterogeneity in the Earth is examined by comparing the locations of the same event using different combinations of phases and network geometries, which reinforces the need to use arrivals other than P for accurate depth resolution. The sensitivity of P arrivals to changes in depth are swamped by model errors, and inclusion of depth-sensitive phases such as pP is highly recommended. The effect of picking errors on location is found to be much smaller than the mislocation caused by neglecting lateral heterogeneity when only P arrivals are used. Consequently, the Monte Carlo analysis, which is primarily aimed at picking errors only, is most appropriate when multiple phases have been used to more accurately constrain the hypocenter, especially for the depth component. Altering the type of phase data used in the location plays a similar role in changing the network geometry, in that both are mechanisms that influence the nature of the constraint on the hypocenter. By relocating events with network geometries corresponding to the different magnitudes, it is found that the location of the event can be affected significantly by the magnitude, and when using robust statistics to describe earthquake residuals, the mislocation can occur in a systematic manner. The effect is marked in regions with significant lateral variations in seismic velocities. For example, low-magnitude events in the Flores Sea are found to be dragged toward Australia as a result of the fast paths to Australian stations relative to the iasp91 reference velocity model.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3