Seismic Wave Propagation and Inversion with Neural Operators

Author:

Yang Yan1ORCID,Gao Angela F.2ORCID,Castellanos Jorge C.1ORCID,Ross Zachary E.1ORCID,Azizzadenesheli Kamyar3ORCID,Clayton Robert W.1ORCID

Affiliation:

1. Seismological Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

2. Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California, U.S.A.

3. Department of Computer Science, Purdue University, West Lafayette, Indiana, U.S.A.

Abstract

Abstract Seismic wave propagation forms the basis for most aspects of seismological research, yet solving the wave equation is a major computational burden that inhibits the progress of research. This is exacerbated by the fact that new simulations must be performed whenever the velocity structure or source location is perturbed. Here, we explore a prototype framework for learning general solutions using a recently developed machine learning paradigm called neural operator. A trained neural operator can compute a solution in negligible time for any velocity structure or source location. We develop a scheme to train neural operators on an ensemble of simulations performed with random velocity models and source locations. As neural operators are grid free, it is possible to evaluate solutions on higher resolution velocity models than trained on, providing additional computational efficiency. We illustrate the method with the 2D acoustic wave equation and demonstrate the method’s applicability to seismic tomography, using reverse-mode automatic differentiation to compute gradients of the wavefield with respect to the velocity structure. The developed procedure is nearly an order of magnitude faster than using conventional numerical methods for full waveform inversion.

Publisher

Seismological Society of America (SSA)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3