General Seismic Architecture of the Southern San Andreas Fault Zone around the Thousand Palms Oasis from a Large-N Nodal Array

Author:

Share Pieter-Ewald1ORCID,Qiu Hongrui2ORCID,Vernon Frank L.3ORCID,Allam Amir A.4ORCID,Fialko Yuri3ORCID,Ben-Zion Yehuda5ORCID

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, U.S.A.

2. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

3. Institute of Geophysics and Planetary Physics, University of California San Diego, La Jolla, California, U.S.A.

4. Department of Geology and Geophysics, The University of Utah, Salt Lake City, Utah, U.S.A.

5. Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, Los Angeles, California, U.S.A.

Abstract

Abstract We discuss general structural features of the Banning and Mission Creek strands (BF and MCF) of the southern San Andreas fault (SSAF) in the Coachella Valley, based on ambient noise and earthquake wavefields recorded by a seismic array with >300 nodes. Earthquake P arrivals show rapid changes in waveform characteristics over 20–40 m zones that coincide with the surface BF and MCF. These variations indicate that the BF and MCF are high-impedance contrast interfaces—an observation supported by the presence of seismic reflections. Another prominent but more diffuse change in SSAF structure is found ∼1 km northeast of the BF. This feature has average-to-low arrival times (P and S) and ambient noise levels (at <30 Hz), and likely represents a relatively fast velocity block sandwiched between broader MCF and BF zones. The maximal arrival delays (P ∼0.1 s and S ∼0.25 s) and the highest ambient noise levels (>2 times median) are consistently observed southwest of the BF—a combined effect of Coachella Valley sediments and rock damage on that side. Immediately northeast of the MCF, large S minus P delays suggest a broad high VP/VS zone associated with asymmetric rock damage across the SSAF. This general overview shows the BF and MCF as mature but distinctly different fault zones. Future analyses will further clarify these and other SSAF features in greater detail.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3