Aeromagnetic Interpretations of the Crittenden County Fault Zone

Author:

Marlow Christopher1,Powell Christine1,Cox Randel2

Affiliation:

1. Center for Earthquake Research and Information, University of Memphis, Memphis, Tennessee, U.S.A.

2. Department of Earth Sciences, University of Memphis, Memphis, Tennessee, U.S.A.

Abstract

Abstract The Crittenden County fault zone (CCFZ) is a potentially active fault zone located within 25 km of Memphis, Tennessee, and poses a significant seismic hazard to the region. Previous research has associated the fault zone with basement faults of the eastern Reelfoot rift margin (ERRM) and described it as a northeast-striking, northwest-dipping reverse fault. However, we suggest that there is an incomplete understanding of the fault geometry of the CCFZ and the ERRM in this region due to significant gaps in seismic reflection profiles used to interpret the fault systems. To improve our understanding of the structure of both fault systems in this region, we apply two processing techniques to gridded aeromagnetic data. We use the horizontal gradient method on reduction-to-pole magnetic data to detect magnetic contacts associated with faults as this technique produces shaper gradients at magnetic contacts than other edge detection methods. For depth to basement estimations, we use the analytic signal as the method does not require knowledge of the remnant magnetization of the source body. We suggest that the CCFZ extends approximately 16 km farther to the southwest than previously mapped and may be composed of three independent faults as opposed to a continuous structure. To the northeast, we interpreted two possible faults associated with the ERRM that intersect the CCFZ, one of which has been previously mapped as the Meeman–Shelby fault. If the CCFZ and the eastern rift margin are composed of isolated fault segments, the maximum magnitude earthquake that each fault segment may generate is reduced, thereby, lowering the existing seismic hazard both fault systems pose to Memphis, Tennessee.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3