Source Characterization for Two Small Earthquakes in Dartmouth, Nova Scotia, Canada: Pushing the Limit of Single Station

Author:

Zhang Miao1ORCID,Liu Min12,Plourde Alexandre1ORCID,Bao Feng3ORCID,Wang Ruijia4ORCID,Gosse John1

Affiliation:

1. Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada

2. School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, China

3. State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China

4. Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, U.S.A.

Abstract

Abstract A pair of small earthquakes (MN 2.4 and 2.6, Earthquakes Canada) hit the city of Dartmouth, Nova Scotia, Canada, in early March 2020. The events were recorded by three seismic stations within 200 km, but only one station (HAL, <10  km) is close enough to offer high-quality broadband signals. In this study, we explore their source parameters using the nearest station through waveform modeling. A nearby quarry blast (MN 2.0) with known Global Positioning System coordinates is adopted as a reference for regional velocity model building and location calibration. We first build a half-space velocity model by estimating the P-S travel-time difference of the blast and determine the near-surface velocity through full-waveform modeling (i.e., comparing a set of synthetic waveforms with the observed blast). The velocity model is then used to evaluate the pair of earthquakes, in which waveform fitting and Rg/S amplitude ratios suggest source depths of ∼0.7  km. The epicenters of these two earthquakes are situated in a recently constructed commercial development. Lastly, single-station template matching finds no similar earthquakes near the hypocenters of the two events in the past decade and only three aftershocks in the following four months. Taking advantage of a ground-truth blast and waveform modeling, our study demonstrates the potential to construct a detailed regional velocity model and determine accurate earthquake source parameters in regions where only a single station is available.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3