Characteristics of Seismicity in the Eagle Ford Shale Play, Southern Texas, Constrained by Earthquake Relocation and Centroid Moment Tensor Inversion

Author:

Li Peng1ORCID,Huang Guo-Chin D.1ORCID,Savvaidis Alexandros1ORCID,Kavoura Florentia12ORCID,Porritt Robert W.34ORCID

Affiliation:

1. Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.

2. Now at, Delft University of Technology, Delft, Netherlands

3. Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.

4. Now at, Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

Abstract

Abstract Analysis of earthquake locations and centroid moment tensors (CMTs) is critical in assessing seismogenic structures and connecting earthquakes to anthropogenic activities. The objective of this study was to gain insights into the seismotectonics of the Eagle Ford Shale play (EF), southern Texas, through relative relocation of earthquakes, assessment of CMT solutions, and investigation of the background stress field. Using Texas Seismological Network (TexNet) data from 2017 through 2019, we were able to relocate 326 earthquakes and obtain CMT solutions for 37 ML≥2.0 earthquakes. These earthquakes are located in the sedimentary basin and uppermost crust, with depths ranging from 2 to 10 km. The earthquake groups in the northeastern EF are linearly distributed along the Karnes fault zone, whereas the southern and western groups are spatially scattered around mapped or unmapped faults. CMT solutions identified 32 normal fault earthquakes and five strike-slip earthquakes. The orientation of the fault plane of most normal fault earthquakes is southwest–northeast, whereas the possible fault plane of the strike-slip fault is from north-northwest to south-southeast, which is roughly perpendicular to the normal faults. Normal and strike-slip faults in the EF are of high dip angles, with the dip angles of the most faults ranging from 60° to 80°. Stress inversion results show that the major orientation of maximum horizontal stress (SHmax) is southwest–northeast, with minor local stress-field rotations. We further estimated earthquake energy release in the EF region using moment magnitude from the CMT solutions, and the cumulative earthquake energy release curve reveals three notable increases in cumulative seismic moment, which occurred in January–July 2018 and January–March 2019, and May–August 2019. Whether these energy releases were caused by anthropogenic activities is a matter for further investigation.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The TexNet-CISR collaboration and steps toward understanding induced seismicity in Texas;Recent Seismicity in the Southern Midcontinent, USA: Scientific, Regulatory, and Industry Responses;2023-05-31

2. Machine Learning Reveals Additional Hydraulic Fracture‐Induced Seismicity in the Eagle Ford Shale;Journal of Geophysical Research: Solid Earth;2023-02

3. Understanding Anthropogenic Fault Rupture in the Eagle Ford Region, South-Central Texas;Bulletin of the Seismological Society of America;2022-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3