Shaking in the Southeastern United States: Examining Earthquakes and Blasts in the Central Georgia–South Carolina Seismic Region

Author:

Marzen Rachel E.12ORCID,Gaherty James B.34ORCID,Shillington Donna J.34ORCID,Kim Won-Young3ORCID

Affiliation:

1. Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.

2. Now at, Occidental Petroleum, Houston, Texas

3. Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, U.S.A.

4. Now at, Northern Arizona University, School of Earth and Sustainability, Flagstaff, Arizona, U.S.A.

Abstract

Abstract Seismicity in the southeastern United States is relatively poorly characterized and thus not well understood. Structures and heterogeneities from multiple stages of Appalachian orogenesis, continental rifting, and magmatism as well as rivers and reservoirs may be influencing seismic activity in the region, but previous constraints are limited. The addition of seismic stations from the U.S. Transportable Array and the Southeastern Suture of the Appalachian Margin Experiment Array in 2012–2014 provide an opportunity to characterize seismicity in the central Georgia–South Carolina region. We develop a seismic catalog of >1000 events from March 2012 to May 2014 within or near the instrument array boundaries 30.1°–35.2°N, 80.9°– 85.7°W. Many of the events detected were industrial blasts, so multiple strategies were tested to discriminate between earthquakes and blasts based on event locations, timing, and spectral amplitude of the P and S arrivals. Based on this analysis, ∼10% of the events in the catalog were classified as earthquakes. Most earthquakes southeast of the eastern Tennessee seismic zone are located in the Carolina terrane, particularly where the Carolina terrane intersects major rivers or reservoirs. One prominent region of seismicity along the Savannah River near Thurmond Lake corresponds with an ∼4.5  m rise in water levels in 2013. A temporal cluster of earthquakes in April 2013 was followed by increased levels of ambient seismicity preceding the nearby Mw 4.1 earthquake in 2014. Focal mechanisms based on first-motion polarities indicate strike-slip to oblique-thrust motion on structures trending approximately north–south or east–west, and a maximum horizontal stress orientation consistent with the regional trend of ∼N60°E, implying that seismicity may reactivate more optimally oriented structures in the Carolina terrane that are oblique to the trend of the Appalachians. Seismicity in central Georgia appears to be controlled by a complex interaction between preexisting crustal structure and hydrologic variability.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3