Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake

Author:

Çelebi M.1

Affiliation:

1. U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

Abstract

Abstract Site-response experiments were performed 5 months after the MS = 7.8 central Chile earthquake of 3 March 1985 to identify amplification due to topography and geology. Topographical amplification at Canal Beagle, a subdivision of Viña del Mar, was hypothesized immediately after the main event, when extensive damage was observed on the ridges of Canal Beagle. Using frequency-dependent spectral ratios of aftershock data obtained from a temporarily established dense array, it is shown that there is substantial amplification of motions at the ridges of Canal Beagle. The data set constitutes the first such set depicting topographical amplification at a heavily populated region and correlates well with the damage distribution observed during the main event. Dense arrays established in Viña del Mar also yielded extensive data which are quantified to show that, in the range of frequencies of engineering interest, there was substantial amplification at different sites of different geological formations. To substantiate this, spectral ratios developed from the strong-motion records of the main event are used to show the extensive degree of amplification at an alluvial site as compared to a rock site. Similarly, spectral ratios developed from aftershocks recorded at comparable stations qualitatively confirm that the frequency ranges for which the amplification of motions occur are quite similar to those from strong-motion records. In case of weak motions, the denser arrays established temporarily as described herein can be used to identify the frequency ranges for which amplification occurs, to quantify the degree of frequency-dependent amplification and used in microzonation of closely spaced localities.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3