Finite-Source Model of the 8 July 2021 M 6.0 Antelope Valley, California, Earthquake

Author:

Wang Kang1ORCID,Dreger Douglas S.1ORCID,Burgmann Roland1ORCID,Taira Taka’aki1ORCID

Affiliation:

1. 1Department of Earth and Planetary Science, University of California, Berkeley, California, U.S.A.

Abstract

Abstract We present a finite-source coseismic slip model of the 2021 Mw 6.0 Antelope Valley earthquake based on the joint inversion of regional seismic waveforms, Interferometric Synthetic Aperture Radar (InSAR), and Global Navigation Satellite Systems data. The results show that the mainshock rupture was dominated by normal slip along a nearly north–south-trending fault dipping to the east. The rupture lasted for ∼10 s, with primarily unilateral propagation toward the south. Most coseismic slip is found to be within a depth range between 6 and 10 km, with apparently no slip reaching the surface. Surface projection of the modeled fault plane matches well with the southern extension of the previously mapped Slinkard Valley fault (SVF). Aftershocks one year after the mainshock are mostly distributed within a relatively narrow band of 2–3 km thickness around the up-dip portion of the inferred coseismic rupture plane. There is little aftershock activity below 10 km, suggesting a relatively shallow brittle-to-ductile transition in this area. Aftershocks are also clustered at shallow depth beneath several branches of the Antelope Valley faults to the east of the mainshock rupture, including the Mw 4.4 event on 27 August 2021, which produced clear coseismic surface deformation observed by InSAR. Most aftershocks, immediately up-dip of the coseismic rupture and to the east beneath the Antelope Valley faults, are in areas of substantial coseismic Coulomb stress increase, particularly when assuming that all faults in this area dip to the east. This suggests that like the SVF that hosted the mainshock, the Antelope Valley faults in this area also dip to the east. There is little to no postseismic deformation seen from InSAR observations ∼2 months after the mainshock. The lack of clear coseismic and postseismic slip on the shallow portion of the fault suggests the potential for future shallow seismic activity.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3