SCENTAR: A High-Density Nodal Array to Study the Structure and Seismogenic Behavior of the Southern Cascadia Forearc

Author:

Delph Jonathan R.1ORCID,Thomas Amanda M.2,Stanciu A. Christian23ORCID,Aslam Khurram24,Chatterjee Avigyan25ORCID,Sassard Vincent1ORCID

Affiliation:

1. 1Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, U.S.A.

2. 2Department of Earth Sciences, University of Oregon, Eugene, Oregon, U.S.A.

3. 3Department of Geophysics, Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

4. 4Extreme Event Solutions Research, Air Worldwide Inc., Boston, Massachusetts, U.S.A.

5. 5Nevada Seismological Laboratory, University of Nevada, Reno, Nevada, U.S.A.

Abstract

Abstract Tectonic and seismogenic variations in subduction forearcs can be linked through various processes associated with subduction. Along the Cascadia forearc, significant variations between different geologic expressions of subduction appear to correlate, such as episodic tremor-and-slip (ETS) recurrence interval, intraslab seismicity, slab dip, uplift and exhumation rates, and topography, which allows for the systematic study of the plausible controlling mechanisms behind these variations. Even though the southern Cascadia forearc has the broadest topographic expression and shortest ETS recurrence intervals along the margin, it has been relatively underinstrumented with modern seismic equipment. Therefore, better seismic images are needed before robust comparisons with other portions of the forearc can be made. In March 2020, we deployed the Southern Cascadia Earthquake and Tectonics Array throughout the southern Cascadia forearc. This array consisted of 60 continuously recording three-component nodal seismometers with an average station spacing of ∼15 km, and stations recorded ∼38 days of data on average. We will analyze this newly collected nodal dataset to better image the structural characteristics and constrain the seismogenic behavior of the southern Cascadia forearc. The main goals of this project are to (1) constrain the precise location of the plate interface through seismic imaging and the analysis of seismicity, (2) characterize the lower crustal architecture of the overriding forearc crust to understand the role that this plays in enabling the high nonvolcanic tremor density and short episodic slow-slip recurrence intervals in the region, and (3) attempt to decouple the contributions of subduction versus San Andreas–related deformation to uplift along this particularly elevated portion of the Cascadia forearc. The results of this project will shed light on the controlling mechanisms behind heterogeneous ETS behavior and variable forearc surficial responses to subduction in Cascadia, with implications for other analogous subduction margins.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3