Affiliation:
1. Seismological Laboratory Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125
Abstract
Abstract
In this study we relax the strong limiting condition of parallel layering which is usually assumed in seismic modeling by allowing dipping boundaries. We start with the derivation of generalized ray theory in a wedge-shaped medium with free and rigid boundaries. Then, through the development of the method of equivalent models and de-Hoop contours, we extend the theory to dipping structure with elastic boundaries. The effect of a dipping interface over a half-space for the case of a line source is shown by a series of numerical models which include various angles of dip and source-to-receiver distances. Results for a line source situated below the layer indicate that, when the layer thickens toward the receiver, one obtains a wave form similar to the case where the source is actually in the layer. These features are produced by the combination of forward and backward traveling rays which can have super-critical reflections.
Publisher
Seismological Society of America (SSA)
Subject
Geochemistry and Petrology,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献