A Study on Machine Learning Approach for Fingerprint Recognition System

Author:

Tamrakar Aayushi1,Gupta Neetesh2

Affiliation:

1. M.Tech Scholar Department of CSE, TIT, Bhopal India

2. Professor Department of CSE, TIT, Bhopal India

Abstract

A biometric system is an evolving technology that is used in various fields like forensics, secured area and security system. Authentication system like fingerprint recognition is most commonly used biometric authentication system. Fingerprint method of identification is the oldest and widely used method of authentication used in biometrics. There are several reasons like displacement of finger during scanning, environmental conditions, behavior of user, etc., which causes the reduction in acceptance rate during fingerprint recognition. The result and accuracy of fingerprint recognition depends on the presence of valid minutiae. Fingerprint Recognition system designed uses various techniques in order to reduce the False Acceptance Rate (FAR) and False Rejection Rate (FRR) and to enhance the performance of the system. This paper reviews the fingerprint classification including feature extraction methods and learning models for proper classification to label different fingerprints. A comparative study of different recognition technique along with their limitations is also summarized and optimum approach is proposed which may enhance the performance of the system.

Publisher

Smart Moves

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fingerprint classification via deep convolutional neural networks: A survey;INTERNATIONAL CONFERENCE ON SCIENTIFIC RESEARCH & INNOVATION (ICSRI 2022);2023

2. Biometric Inheritance Pattern Synthesis and Features’ Extraction;Information and Communication Technology for Competitive Strategies (ICTCS 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3